Lesson 8

Media Object Production - Hardware and Software Tools

- Concept of Media Object Production
- Process of CM Media Object Production
- Audio Production
- Video Production
 - Capturing
 - Editing
 - Compressing
 - Outputting
- Demos of Live Audio/Video Capture

Media Object

Media Object

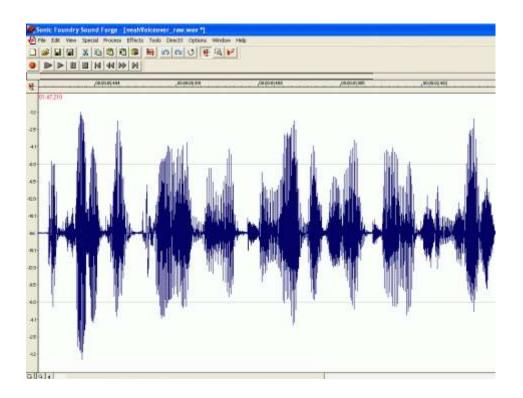
component in a multimedia document, presentation, etc.

- Text
- 2D graphics
- 3D graphics
- Animation
- Still image
- Audio clip
 - * speech
 - * music
 - * other sound
- Video clip

Media Production

Media production: process to produce a medium object

🛛 Text


- Language, font, size, color, shadow, blink, etc
- Tools: LaTex, Word, HTML editors, ...
- □ 2D/3D Graphics
 - Programming languages: Java2/3D, OpenGL, SVG, ...
 - Tools: TrueSpace, LightWave3D, Inspire3D, ...
- Animation
 - Programming language: Java, Java script, VRML, ...
 - Tools: Infini-D, Flash, TrueSpace, ...
- □ Still Image & Moving Images (Video)
 - Captured via scanner, camera, software, ...
 - Tools: xv, Display, PhotoDraw, Photoshop, ...

□ Audio – Continuous Media (CM) \rightarrow special techniques for its production □ Video – Continuous Media (CM) \rightarrow special techniques for its production

General Features of CM Production

Features of CM

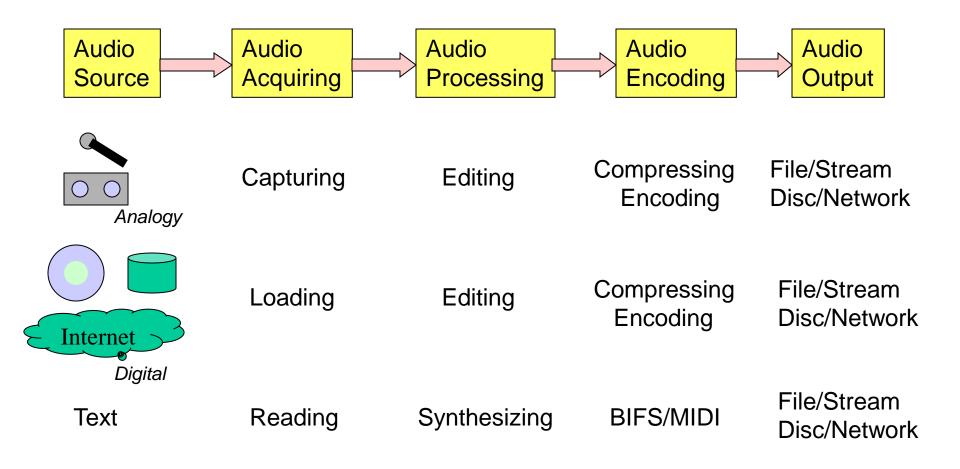
- Change with time: samples/sec (audio) and frame/sec (video)
- Large volume of data: proportional to the length
- Realtime processing power

General Process of CM Production

Production Process

Pre-Production

- Clarify intended application of CM to be produced
- Prepare hardware: mic, camera, CPU power, memory/disc size, board
- Determine OS: Unix/Linux, Windows 2000/XP/VISTA/7, and Mac
- Purchase, download, install necessary software

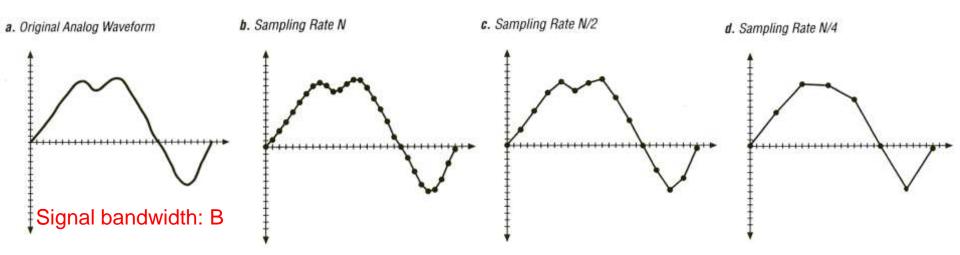

In-Production

- CM acquiring, processing/editing, encoding and output

Post-Production

- Testing and refining when necessary

Audio Production Process

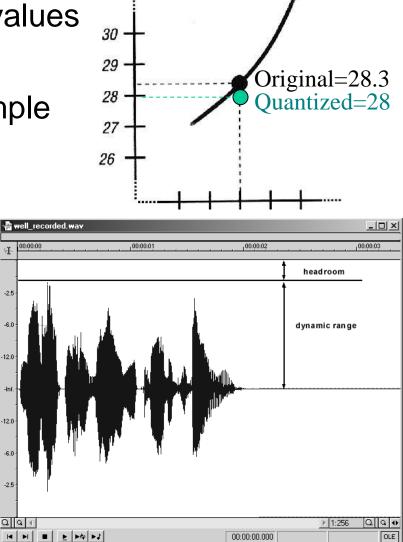

Audio Pre-Production

- Basic Notice
 - Good source: good microphone, mixing desk
 - Signal processing: compressor, EQ unit
 - Proper recording environment

Audio Digital Samples and Sampling Rate

Sampling Rate/Frequency: number of samples per second

More samples, better quality but larger data


Nyquist sampling rate: N=>2B \rightarrow No Distortion

Audio Resolution and Quantization Levels

Samples are quantized into discrete values Sample Resolution:

- \rightarrow all possible values or bits per sample
- 256 values from 8 bits
- 65536 values from 16 bits

Setup "gain" carefully to have a proper dynamic range

Audio Frequency Features

FQ Range	Contents
20–60 Hz	Extreme low bass. Most speakers cannot reproduce this.
60–250 Hz	The audible low-end. Files with the right amount of low end sound <i>warm</i> , files without enough sound <i>thin</i> .
250 Hz–2 kHz	The low-midrange. Files with too much in the low-mids are hard to listen to and sound telephone-like.
2 kHz–4 kHz	The high-midrange. Where most speech information resides. In fact, cutting here in the music and boosting around 3 kHz in your narration makes it more intelligible.
4 kHz–6 kHz	The presence range. Provides clarity in both voice and musical instruments. Boosting 5 kHz can make your music or voiceover (not both!) seem closer to the listener.
6 kHz–20 kHz	The very high frequencies. Boosting here adds "air" but can also cause sibilance problems

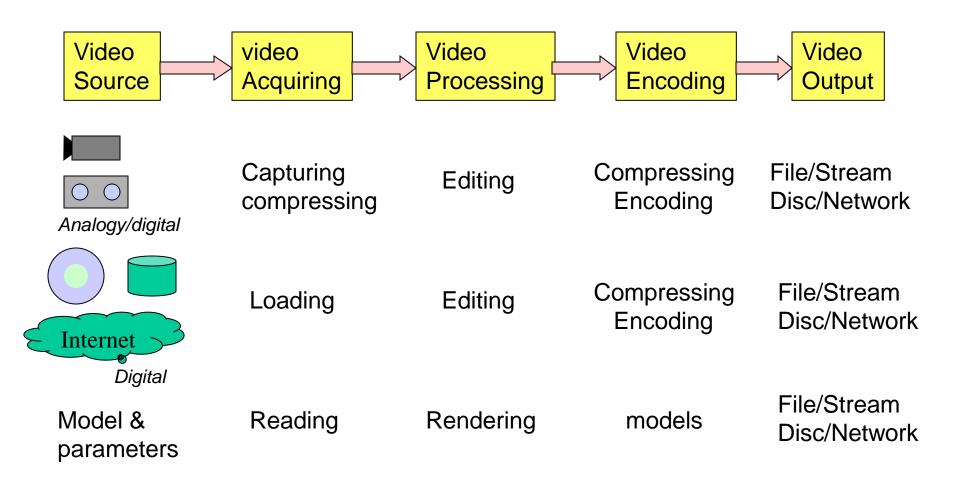
General Rules in Audio Capturing

Audio quality

- Target application: Disc, network no-live or live broadcast
- Set input level correctly
- Save as sound file format with no or small quality loss: au, wav, aif, ...
- Choose certain sampling rate and resolution (8/12/16 bits)
 The higher rate and bits, the high quality but the more data
 <u>Data amount = Channels x SamplingRate x Bits / 8 (Bytes)</u>
- □ Capture interface and sound card
 - Microphone input and line input
 - Many different sound cards available
- OS and software
 - Audio capture methods are similar for different OSs
 - Capture software embed in OS: Windows Media
 - Capture software bounded with sound card
 - Capture API in programming languages like Java

Audio Editing

- Cropping: Select a peace/clip of audio from an audio file
- Cutting, copying and pasting
- Equalization
- Normalization
- Noise reduction
- Transition
 - Trimming silence
 - Fade
- Popular sound editing software
 - Sound Forge from Sonic Foundry
 - Cool Edit from Syntrillium
 - SoundEdit from Macromedia


Audio Compressing/Encoding

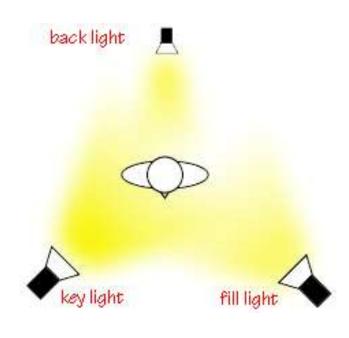
- Audio editing is usually based on uncompressed audio: au, wav, aif
- Compression: reduce data size based on sound types and targeted applications Make a balance between quality and size
 - channels (channel converting)
 - sampling rate (re-sampling)
 - bit resolution
- Encoded audio file formats
 - wave (compressed), QuickTime (mov), MP3, GSM, DCR, ...
- Encoded audio stream formats
 - RealAudio (ra, ram), Windows (asf), QuickTime (mov), MP3
- Music vs. speech codecs
 - Music and speech are fundamentally different
 - Codecs have been optimized for one or the other
 - When in doubt, use a music codec

Audio Output

- Audio output destinations
 - speaker
 - analogy storage device
 - digital storage device
 - network/Internet
- Network down loaded applications
 - \rightarrow stored in disc in compressed file format
- Network real time applications
 - \rightarrow outputted to a streaming server in stream format

Video Production

Video Pre-Production


- Basic Notice
 - Good camera: DV is most cost-efficient
 - Buy the best tripod you can afford!
 - Lighting: 3-point lighting kit

Video Pre-Production - Lights

Three Point Lighting

- Key Light
- Fill Light
- Back Light or Hair Light

Video Capturing

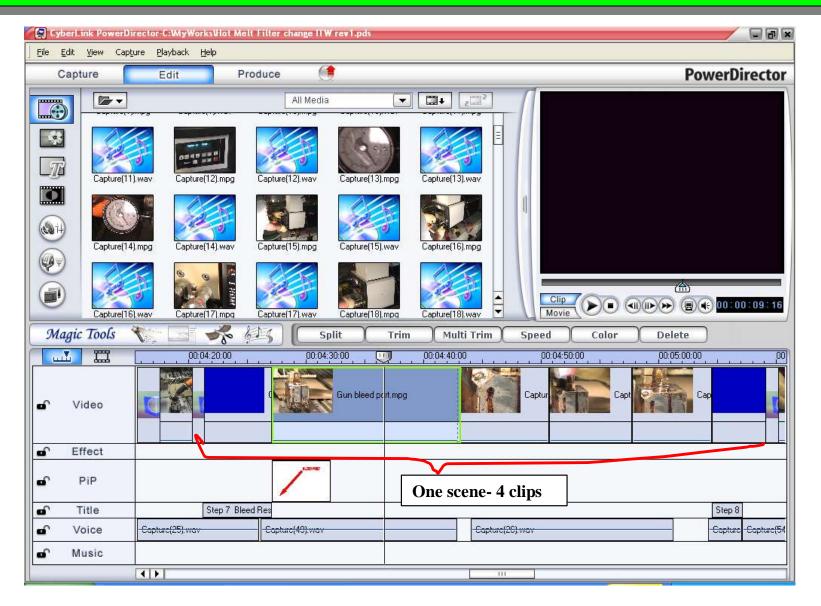
□ Video quality

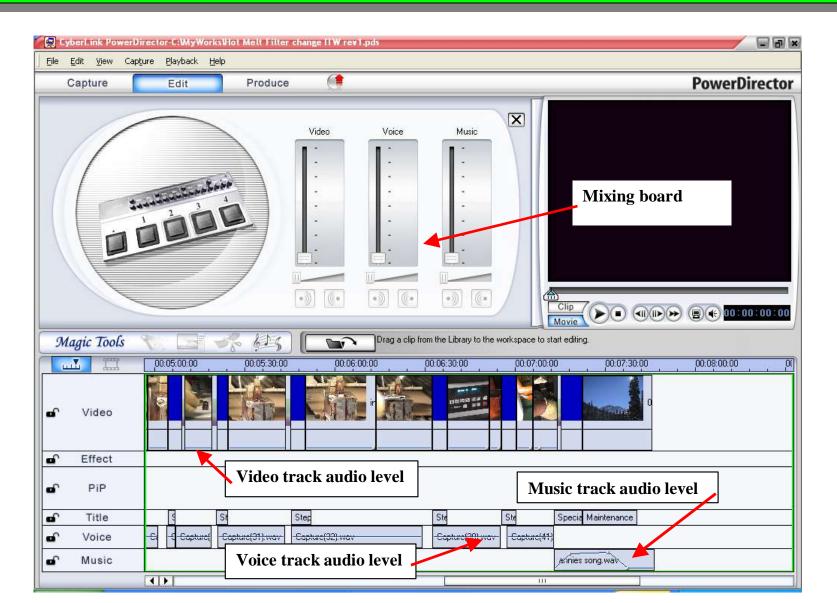
- Target application: Disc, network no-live or live broadcast
- Select relative large image size: 640x480, 320x240
- Choose frame rate (fps) and true color (24 bits)
- Save as video file format with no or small quality loss: avi, mjpeg, ...
- Leave enough memory and HD space

Data amount

- = width x height x fps x bits x time / 8 (Bytes, no-compressing)
- = The_above / compress_ratio (with compressing)
- □ Capture interface and video capture card
 - Analogy interface, digital IEEE1394 (i.Link), USB
 - Video capture card: interface type and with/without hardware encoder # GGV-VCP2M/PCI (software encoding)
 - # MEG-VC2
 - # IFC-IL3/DV
 - # EZDV II
 - # DVStorm-RT Light

Video Editing - Traditional "A/B Roll" Analog Editing System


Video Editing – Modern Digital Edit using Computer Software


Video Editing

- Specify the location of a video frame, called time code
- <u>SMPTE</u> (Society for Motion Picture Television Engineers, pron. "simptee") <u>hours:minutes:seconds:frames</u> <u>00:04:26:05 → an image at the 4th minute, 26th second and 5th frame</u>
- Nonlinear editing: arrange a video sequence in arbitrary order
- Special effects
 - Transition between two clips: fading, wiping, scrolling, ...
 - Superimposing: superimpose one clip over another
 - Filtering: lens flare, zoom, twist, pan, ...
 - Morphing: one image cross-fades into another
- Popular video editing software
 - Adobe's Premiere
 - Ulead's Video Studio
 - MediaStudio

An Example of Video Editing

An Example of Video and Audio Mixing

Video Compressing/Encoding

- Compression: further reduce data size for particular applications Make a balance between quality and size
 - Reducing image size (640x480, 320x240, 240x180, 176x132, ...)
 - Reducing frame rates (15, 10, 5, ...)
 - Coding with high compression ratio
- Encoded video file formats
 - H.263/264, MPEG-2, MPEG-4, QuickTime (mov), WAM, ...
- Encoded video stream formats
 - RealVideo (ram), Windows (asf), QuickTime (mov)

Video Output

- Video output destinations
 - TV
 - analogy storage device
 - digital storage device
 - network/Internet
- Network down loaded applications
 - \rightarrow stored in disc in compressed file format
- Network real time applications
 - \rightarrow outputted to a streaming server in stream format

Demos of Live Audio/Video Capture

- □ Audio capture using Sound Recorder in Windows
- □ Video capture using Creative WebCam Plus
- □ Windows Media Player
- Windows Media Encoder